Humidity Sensors - continued					
Capacitive with Signal Conditioning - continued					
	Order		Price	Each	
Type	Code	1+	10+	25+	100+
Slotted TO-39 can	723-4648	3,539.00	3,283.00	3,125.00	--
Filtered TO-5 can with thermistor	723-4650	6,684.00	6,364.00	6,029.00	6,013.00
Filtered TO-5 can with RTD	723-4661	5,112.00	4,808.00	4,554.00	4,542.00

Pressure Sensors

General Data

Piezo-Resistive Principle

Many pressure transducers employ the piezo-resistive principle to convert pressure to an electrical signal. The key element is a silicon chip which has been micro-machined to create a diaphragm around which four resistors are diffused in a bridge configuration. The application of pressure to this silicon diaphragm causes the bridge resistors to change their value creating a differential voltage output proportional to the applied pressure.

Open Sensors, Isolated Transducers - Applications

Transducers come in two main forms; open sensors, where the pressure medium comes into contact with the silicon diaphragm and isolated transducers, where the silicon chip is isolated from the media by a stainless steel diaphragm. Most open transducers contain a protective coating over the silicon chip to protect it from humidity and dust are generally recommended for use with air and dry gases.
Typical Open Sensor Applications: medical equipment, pneumatic control, instrumentation, barometry and HVAC. The isolated range of transducers is intended for use with corrosive or non-corrosive liquid or gaseous media compatible with stainless steel, often in rugged or hostile environments.
Typical Isolated Transducer Applications: process control, industrial control water, gas and chemical industries, hydraulics, combustion control and many others. We offer a wide range of pressure transducers to cover the many different applications for these products. These include transducers with and without calibration and temperature compensation, from devices with basic mV output to fully conditioned devices, offering $1-6 \mathrm{~V}$ and 20 mA output and intrinsically safe versions.

Types of Pressure Measurement

This product range covers the three types of pressure measurement: gauge, differential and absolute.
Gauge Pressure: Pressure measured relative to ambient pressure.
Differential Pressure: Pressure measured relative to another pressure.
Absolute Pressure: Pressure measured relative to a vacuum

Pressure Unit Conversion Constants

There are many different units used to measure pressure in different industries, and the chart below shows the conversion factor needed to change form one unit to another. These are the most commonly used as per international convention.

	PSI ${ }^{1}$	in. $\mathrm{H}_{2} \mathrm{O}^{2}$	in. Hg^{3}	k Pascal	millibar	cm. $\mathrm{H}_{2} \mathrm{O}^{4}$	$\mathrm{mm} . \mathrm{Hg}^{5}$
PS ${ }^{1}$	1.000	27.680	2.036	6.8947	68.947	70.308	51.715
in. $\mathrm{H}_{2} \mathrm{O}^{2}$	3.612710^{2}	1.000	7.355410^{2}	0.2491	2.491	2.5400	1.8683
in. Hg^{3}	0.4912	13.596	1.000	3.3864	33.864	34.532	25.400
k Pascal	0.14504	4.00147	0.2953	1.000	10.000	10.1973	7.5006
millibar	0.01450	0.40147	0.02953	0.100	1.000	1.01973	0.75006
cm. $\mathrm{H}_{2} \mathrm{O}^{4}$	1.4223710^{2}	0.3937	2.895810^{-2}	0.09806	0.9806	1.000	0.7355
$\mathrm{mm} . \mathrm{Hg}^{5}$	1.933710^{-2}	0.53525	3.937010^{-2}	0.13332	1.3332	1.3595	1.000
Note:	1. PSI - pou 2. at $39^{\circ} \mathrm{F}$ 3. at $32^{\circ} \mathrm{F}$ 4. at $4^{\circ} \mathrm{C}$ 5. at $0^{\circ} \mathrm{C}$	per squar	inch				

Basic Sensors - SX Series

SX....AD2/SX...GD2
$H=13.84, W=13.97$
$\mathrm{D}=11.94$
ure Port $0 / \mathrm{D}=2.6$

$$
\begin{array}{ll}
\mathrm{D}=2.6 \quad \text { Pressure Port } 0 / \mathrm{D}=2.28 \\
\text { Pin Spacing }=15.24 \times 2.54
\end{array}
$$

Honeywell Sensym

27.2, $W=29.2, D=10.2$

Pressure ports $0 / D=4.83$
Fixing Centers $=22.9$

- Easy pressure connection using plastic tubing
- DIP package for easy PCB mounting
- Standard differential types can be used for gauge or differential pressure measurements
Pressure sensors featuring only the basic shear stress IC pressure sensor element. The sensors are for use with non-corrosive and non-ionic media, eg. air, dry gases.

Reference conditions Supply voltage Linearity \& hysteresis	$\mathrm{Vs}=5 \mathrm{~V} \mathrm{dc}, \mathrm{TA}=25^{\circ} \mathrm{C}$ 12 V dc max. 0.2% FS typ., 0.5% FS max		Repeatability Output impedance Operating temp. range		$\begin{aligned} & 0.5 \% \text { FS typ } \\ & 4.5 \Omega \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
Operating Pressure Range 0 to 1 psig 0 to 5 psig 0 to 15 psia	Maximum Pressure 20Psi 20Psi 30Psi	Full Scale Ope Span (typ) Pres 20 mV 0 to 75 mV 0 to 110 mV 0 to	ting ure Range 0 psig 00 psig 50 psid	Maximum Pressure 60Psi 150Psi 200Psi	Full Scale Span (typ) 110 mV 150 mV 150 mV
					212228
Operating	Mftrs.	Order Code	Price Each		
Pressure	List No.		$1+$	10+	$25+$
Dip Package					
0 to 15 psia	SX15AD2	674-217	1,847.00	1,695.00	1,554.00
0 to 1 psig	SX01GD2	674-229	1,865.00	1,712.00	1,570.00
0 to 1 psid	SX01DD4	674-230	1,865.00	1,712.00	1,570.00
0 to 5 psig	SX05GD2	674-242	1,865.00	1,712.00	1,570.00
0 to 5 psid	SX05DD4	674-254	1,865.00	1,712.00	1,570.00
0 to 15 psig	SX15GD2	674-266	1,847.00	1,695.00	1,554.00
0 to 15 psid	SX15DD4	674-278	1,908.00	1,823.00	1,606.00
0 to 30 psid	SX30DD4	674-291	1,865.00	1,712.00	1,570.00
0 to 100 psig	SX100GD2	674-308	1,865.00	1,712.00	1,570.00
Standard Package					
0 to 1 psid	SX01DN	414-773	2,038.00	1,865.00	1,732.00
0 to 5 psid	SX05DN	414-785	2,038.00	1,865.00	1,732.00
0 to 15 psid	SX15DN	414-797	2,038.00	1,957.00	- -
0 to 30 psid	SX30DN	414-803	2,038.00	1,865.00	1,732.00
0 to 100 psid	SX100DN	414-815	2,038.00	1,865.00	1,732.00
0 to 150 psid	SX150DN	414-827	2,038.00	1,865.00	1,732.00

Temperature Compensated Sensors Honeywell Sensyin DIP Package - SDX Series

This family of compensated and calibrated sensors is the second generation of Sensym's SCX Series. Incorporating "constraint-wafer" technology the SDX Series provides:-

- Up to 5 times improvement of long term stability and repeatability
- Greater immunity to package stress
- Tight calibration of offset and span
- Temperature compensation of offset and span, giving an accurate and stable outpu over $0-50^{\circ} \mathrm{C}$ range
- New DIP package features standard IC dimensions and pin spacing for easy PCB mounting
- For use with non-corrosive, non-ionic media, eg. air and dry gases

Reference conditions			$V_{S}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Max. supply voltag			$V_{S}=20 \mathrm{~V}$		
Linearity \& hysteresis			$\pm \pm 0.2 \%$ FS typ, $\pm 1 \%$ FS max		
Repeatability			$\pm 0.2 \%$ FS typ, $\pm 0.5 \%$ FS max		
Span shift with temp. $\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$			$\pm 0.4 \%$ FS typ,	max	
Offset shift with te	$0^{\circ} \mathrm{C}$ to 50°		$\pm 0.2 \mathrm{mV} \mathrm{typ}, \pm 1 \mathrm{mV}$ max		
Output impedance			SDX $=4 \mathrm{k} \Omega$ typ, SDXL $=6 \mathrm{k} \Omega$ typ.		
Operating temp. range			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Offset calibration			$0 \pm 1 \mathrm{mV}$		
Common mode voltage			1.5 V min, 3.0 V	max	
Operating	Proof	Full Scale	Operating	Proof	Full Scale
Pressure Range	Pressure	Span	Pressure Range	Pressure	Span
0 to 5" H2O	5 Psi	25 mV	0 to 15 psig	30 Psi	90 mV
0 to 10" H2O	5 Psi	25 mV	0 to 30 psig	60 Psi	90 mV
0 to 1 psig	20 Psi	18 mV	0 to 100 psig	150 Psi	100 mV
0 to 5 psig	20 Psi	60 mV			

